

Page 1 of 15 Pages

No.: GJW2018-2215

TEST REPORT

NAME OF SAMPLE:	VALVE REGULATED TUBULAR GEL BATTERY
CLIENT:	SHENZHEN SENZER TECH.,CO.LTD
CLASSIFICATION OF	ΓEST: Commission Test

TEST REPORT

No.: GJW2018-2215 Page 2 of 15 Pages

Name of product: VALVE REGULATED TUBULAR GEL BATTERY	Trade mark: HAZAN
Type/Model:	Sample identification:
OPzV2-1200, 1200Ah(10hr), 2V	OPzV2-1200 1#~3#
OPzV2-3000, 3000Ah(10hr), 2V	OPzV2-3000 4#
OPzV2-2500, 2500Ah(10hr), 2V	OPzV2-2500 5#
OPzV2-2000, 2000Ah(10hr), 2V	OPzV2-2000 6#
OPzV2-250, 250Ah(10hr), 2V	OPzV2-250 7#
Commissioned by: SHENZHEN SENZER TECH.,CO.LTD	Manufacturer by: SHENZHEN SENZER TECH.,CO.LTD
Commissioner address: No,402th 4th floor,Tower 5th, Qiaochengfang Nanshan, Shenzhen, P. R. China	Manufacturer address: Huaqiang Industrial Zone,Qingcheng District Qingyuan,Guandong, P. R. China
Quantity of sample: 7pcs	Sampled by: —
Sample status: The samples' status is good.	Sampling at (place): —
Means of receiving: Submitted by manufacturer	Means of sampling: —
Classification of test: Commission Test	Sampling date: —
Receiving date: 2018-03-10	Completing date: 2018-08-22
Tested according to: IEC 60896-21:2004, IEC 60896-22:2004	Test item: 17 items

Test conclusion:

The VALVE REGULATED TUBULAR GEL BATTERIES submitted by SHENZHEN SENZER TECH,. CO. LTD are tested according to IEC 60896-21:2004 Stationary lead-acid batteries- valve regulated types-methods of test and IEC 60896-22:2004 Stationary lead-acid batteries-valve regulated types-requirements.

The test results of High current tolerance, Protection against internal ignition from external spark sources, Protection against ground short propensity, Content and durability of required markings, Material identification, Valve operation, Intercell connector performance, Discharge capacity, Recharge behaviour, Abusive over-discharge, Thermal runaway sensitivity and Stability against mechanical abuse of units during installation comply with IEC 60896-21:2004 and IEC 60896-22:2004.

The test values of the Gas emission, Short circuit current and d.c. internal resistance, Flammability rating of materials, Low temperature sensitivity and Dimensional stability at elevated internal pressure and temperature are stated in the report.

Date of 16 ste 12 1 8-08-25

Approved by

Jin Grown

Reviewed by: Huangkuns

Tested by:

Seal of CVC

Description and ill	Description and illustration of the sample:				
The samples' status is good.					
Description of the	sampling procedure:				
•					
	/				
Description of the	deviation from the standard, if any:				
•	•				
	,				
Remarks:					
Throughout this re	eport a comma is used as the decimal separator.				
_					
Туре	Items Constitution With the second to be a first to the second to the se				
OPzV2-1200	Gas emission, High current tolerance, Short circuit current and d.c. internal resistance, Protection against internal ignition from external spark sources, Protection against ground short propensity, Material identification, Valve operation, Content and durability of required markings, Flammability rating of materials, Intercell connector performance, Discharge capacity, Abusive over-discharge, Thermal runaway sensitivity, Low temperature sensitivity, Dimensional stability at elevated internal pressure and temperature and Stability against mechanical abuse of units during installation				
OPzV2-3000	Discharge capacity				
OPzV2-2500	Discharge capacity				
OPzV2-2000	Discharge capacity				
OPzV2-250	Discharge capacity				

	IEC 60896-21:2004 IE	C 60896-22:	2004				
CI.	Requirement – Test		Resu	lt			Verdict
6	Safe operation requirements						
6.1	Gas emission						
	The test methods are according to clause 6.1.1 to 6.1.14 which are stated in the standard IEC 60896-21	No.		OPzV2-1200			
	Requirement and application: At the rated float charge voltage;	Uflo(V)=	The 1 st	The 2 nd	The 3 rd	The 4 th	state data
	Requirement and application: at 2,40Vpc overcharge voltage conditions; state data for all applications: ml gas per cell, h and Ah at 20 C;	2,25 ml /(Ah h cel	(II) 0,01	0,01	0,01 2	0,01 1	State data
		at 2,40Vpc overcharge ml /(Ah h cel	е	0,0)42	•	
6.2	High current tolerance						
	The test methods are according to clause 6.2.1 to 6.2.6 which are stated in the standard IEC 60896-21	- OPzV2-1200:				Р	
	Requirement and application: Measure unit voltage, inspect and document the status of the top-lead and terminals of each unit after 30s current flow;	0.272.1200.					
	Pass for all applications: Show evidence of no incipient melting or of no loss of electrical continuity after 30s of high	No.	1#	2#		3#	' -
	current flow (value to be stated). After the completion of the specified discharge duration, the test shall stand for 5minutes in open circuit and their voltage measured and reported.	Voltage after the test (V) 2,08 2,06 2,06				2,06	
6.3	Short circuit current and d.c. internal	esistance					
	The test methods are according to clause 6.3.1 to 6.3.6 which are stated in the standard IEC 60896-21	OPzV2-120	00:				
	Define prospective short-circuit value I _{sc} and internal resistance Ri of all units of a	No.	1#	2#		3#	state data
	type range	Short-circ uit: (A)	6200	570	0 5	5900	
		Resistan ce: (mΩ)	0,26	0,28	3 (0,27	
6.4 Protection against internal ignition from external spark sources							
	The test methods are according to clause 6.4.1 to 6.4.6 which are stated in the standard IEC 60896-21						Р

IEC 60896-21:2004 IEC 60896-22:2004					
CI.	Requirement – Test	Result	Verdict		
	Requirement and application: induce sparks near representative valve/barrier assemblies during emission Pass for all application: no evidence of rapid combustion or explosion beyond valve/barrier assemblies	explosion beyond valve/barrier assemblies.	Р		
6.5	6.5 Protection against ground short propensity				
	The test methods are according to clause6.5.1 to 6.5.9 which are stated in the standard IEC 60896-21				
	Requirement and application: Operate units in different orientations and apply d.c. gradient; Pass for all applications: No evidence of ground short and leakage phenomena;	No evidence of ground short, no leakage.	Р		
6.6	Content and durability of required marking	gs			
	The test shall consist of visual verification of a) the presence and b) the legibility of all the required markings before and after exposure to selected chemicals The test methods are according to clause 6.6.1 to 6.6.4 which are stated in the standard IEC 60896-21 including test with water and aliphatic solvent, test with neutralizing solutions and test with electrolyte Requirement and application: 1.Information shall remain readable after exposure to chemicals and remain in	OPzV2-1200: The markings are readable after rubbed 15s with water, petroleum, solution of sodium carbonate, and 40% in weight of H ₂ SO ₄ in water respectively. The requested information is present.	Р		
	place 2. Requested information to be present				
6.7	Material identification				
	The test methods are according to clause 6.7.1 to 6.7.4 which are stated in the standard IEC 60896-21				
	Requirement and application: Inspect case and/or cover for ISO 1043-1 materials symbols. Expose to chemicals. Pass for all applications: ISO symbols present on the outside of the cover or/and case. Symbols shall remain readable after exposure to chemicals and remain in place		Р		

IEC 60896-21:2004 IEC 60896-22:2004						
CI.	Requirement – Test	Result	Verdict			
6.8	Valve operation The test methods are according to clause 6.8.1 to 6.8.3 which are stated in the standard IEC 60896-21 Requirement and application:	OPzV2-1200: Open/close valve presure (Kpa) is:	P			
	Overcharge units and detect gas flow from the valve; Pass for all applications: Gas release detected before and after stress temperature impact test.	open(10~30KPa); release(3~10KPa).				
6.9	Flammability rating of materials					
	The test methods are according to clause 6.9.1 to 6.9.4 which are stated in the standard IEC 60896-21					
	Requirement and application Determine flammability rating of case and cover material; State data for all applications: State the flammability rating level for samples of thickness equivalent to that of case and cover.	Flammability rating level: UL 94-V0	State data			
6.10	Intercell connector performance					
	The test methods are according to clause 6.10.1 to 6.10.2 which are stated in the standard IEC 60896-21	OPzV2-1200:	_			
	Requirement and application: Measure and report maximum intercell connector temperature reached; State data for all applications: Stats maximum temperature reached.		Р			
6.11	Discharge capacity					
	The test methods are according to clause 6.11.1 to 6.11.12 which are stated in the standard IEC 60896-21					
	Requirement and application: Determine actual capacity C_a ; C_a to be at least \times % of C_{rt} with all units at all rates shown below; 10h \ 8h \ 3h \ 1h \ 0,25\ 1,80Vpc\1,75Vpc\ 1,70Vpc\ 1,60\Vpc\1,60Vpc\ Ca \geqslant 95% C_{rt}		Р			

	IEC 60896-21:2004 IE	C 60896-22:2004	
CI.	Requirement – Test	Result	Verdict
6.12	Charge retention during storage The test methods are according to clause 6.12.1 to 6.12.7 which are stated in the standard IEC 60896-21		
	Requirement and application: Determine charge retention factor C_{rf} after 6 months of storage; Comply for all applications: $C_{rf} \geqslant 70\%$		N/A
6.13	Float service with daily discharges		
	The test methods are according to clause 6.13.1 to 6.13.5 which are stated in the standard IEC 60896-21		N/A
	Requirement and application: see table 9 and Table 17 in the standard IEC60896-22		
6.14	Recharge behavior		
	The test methods are according to clause 6.14.1 to 6.14.12 which are stated in the standard IEC 60896-21	OPzV2-1200:	
	Requirement and application: Rbf24h 24h Recharge behavior factor ≥90% Rbf168h 168h Recharge behavior factor ≥98%	Rbf24h: 96%. Rbf168h: 99%.	Р
6.15	Service life at an operating temperature o	f 40 ℃	
	The test methods are according to clause 6.15.1 to 6.15.5 which are stated in the standard IEC 60896-21		
	Requirement and application: Brief duration exposure time: ≥ 500days; Medium duration exposure time: ≥ 750days; Long duration exposure time: ≥ 1100days Very long duration exposure time: ≥ 1700days.		N/A

IEC 60896-21:2004 IEC 60896-22:2004							
CI.	Requirement – Test		Res	ult		Verdict	
		1					
6.16	Impact of a stress temperature of 55 °C or The test methods are according to clause 6.16.1 to 6.16.8 which are stated in the standard IEC 60896-21						
	Requirement and application: At 60 C Capacity monitored with 3h rate discharge test: Brief duration exposure time ≥150days; Medium duration exposure time ≥ 175days; Long duration exposure time ≥250days; Very long duration exposure time ≥ 350days.	≥150days; time ≥ ≥250days;				N/A	
6.17	Abusive over -discharge						
	The test methods are according to clause 6.17.1 to 6.17.15 which are stated in the standard IEC 60896-21 Requirement and application: determine	OPzV2-1200:			Р		
	capacity ration C_{aod} ,unbalanced sting over-discharge C_{oad} , $C_{\text{oad}}{\geqslant}0.80$ (for the string)	Cyclic over-discharge capacity C _{aoc} : 95%					
	Requirement and application: determine capacity ration C_{aoc} , unbalanced sting over-discharge C_{oac} , $C_{oac} \ge 0,90$ (for the string)						
6.18	Thermal runaway sensitivity	l .					
	The test methods are according to	OPzV2-1200:					
	clause6.18.1 to 6.18.14 which are stated in the standard IEC 60896-21	At 2,45Vpc At 2,60Vpc			рс		
	Requirement and application: Comply for all applications: Achieve at least 1 week below 60 C at 2,45Vpc and at least 24h below 60 C at 2,60Vpc; Show ultimate time to 60 C or ultimate temperature after 168h at 2,45Vpc and 2,60Vpc.	temperat 168h is 4	The Maximum temperature after 168h is 46 C at 2,45V(below The Maximum temperature is 54 C after 24h of charging at 2,60V;		Р		
6.19	Low temperature sensitivity						
	The test methods are according to clause 6.19.1 to 6.19.13 which are stated in the standard IEC 60896-21		200:				
	Paguiroment and applications show	No.:	1#	2#	32#	State data	
	Requirement and application: show abusive low temperature service capacity (C _{als}) of all unit and report eventual	C _{als} :	99,0%	98,0%	98,0%		
	freezing induced damages.	No freezing induced damages.					
				OT/01 E			

IEC 60896-21:2004 IEC 60896-22:2004							
CI.	Requirement – Test	Result	Verdict				

6.20	Dimensional stability at elevated internal pressure and temperature					
	The test methods are according to clause 6.20.1 to 6.20.6 which are stated in the	OPzV2-1200				
	standard IEC 60896-21	Items	Length	Width	State data	
	Requirement and application: Show dimensional change in percentage	Chang in mm	0,57	0,82	Julio dala	
	and in mm.	Change in percentage	0,21%	0,39%		
6.21	Stability against mechanical abuse of units during installation					
	The test methods are according to clause 6.21.1 to 6.21.6which are stated in the standard IEC 60896-21	OPzV2-1200: No leakage detectable after two times two drops.			P	
	Requirement and application: Show leakage inspection results; No leakage detectable after two times two drops.				·	

	Table A: 6.11 Discharge capacity								
Туре		(OPzV2-120	0		OPzV2-30 00	OPzV2-25 00	OPzV2-20 00	OPzV2-25 0
C No	C ₁₀ (Ah)	C ₈ (Ah)	C ₃ (Ah)	C(Ah)	C _{0.25} (Ah)	4#	5#	6#	7#
Crt	1200	1136	925,5	758,4	540,0	3000	2500	2000	250
1#	1212,4	1152,6	945,0	777,2	550,8	C ₁₀ (Ah)			
2#	1209,1	1161,7	940,3	780,6	556,2	3055,5	2527,1	2010,6	261,3
3#	1218,7	1158,2	942,4	775,7	553,2		%of	Crt	
			%of Crt			103,6%	106,0%	101,7%	106,5%
1#	105,2%	101,5%	103,5%	106,0%	102,0%				
2#	104,8%	105,4%	102,7%	100,5%	103,0%				
3#	106,7%	100,7%	101,7%	104,8%	102,4%				

Important

- 1. The test report is invalid without the official stamp of CVC and Paging seal of CVC.
- 2. Nobody is allowed to photocopy or partly photocopy this test report without written permission of CVC.
- 3. The test report is invalid without the signatures of Ratifier, Reviewer and Testing engineer.
- 4. The test report is invalid if altered.
- 5. Objections to the test report must be submitted to CVC within 15 days.
- 6. The test report is valid for the tested samples only.
- 7. As for the test result, "N/A" means "not applicable", "P" means "pass", "F" means "fail" and "-" means "no need for judgement".

Address: No. 3, Tiantaiyi Road, Kaitai Avenue, Science City, Guangzhou,

P. R. China

Tel 020 32293888

Fax 020 32293889

Post Code 510663

E-mail office@cvc.org.cn (goffice@gtihea.com)

Website: http://www.cvc.org.cn